direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C22×Q8, C2.2C24, C4.7C23, C22.9C23, C23.14C22, (C22×C4).7C2, (C2×C4).30C22, SmallGroup(32,47)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×Q8
G = < a,b,c,d | a2=b2=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 78, all normal (4 characteristic)
C1, C2, C2, C4, C22, C2×C4, Q8, C23, C22×C4, C2×Q8, C22×Q8
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8
Character table of C22×Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
(1 9)(2 10)(3 11)(4 12)(5 21)(6 22)(7 23)(8 24)(13 19)(14 20)(15 17)(16 18)(25 30)(26 31)(27 32)(28 29)
(1 22)(2 23)(3 24)(4 21)(5 12)(6 9)(7 10)(8 11)(13 28)(14 25)(15 26)(16 27)(17 31)(18 32)(19 29)(20 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 17 3 19)(2 20 4 18)(5 27 7 25)(6 26 8 28)(9 15 11 13)(10 14 12 16)(21 32 23 30)(22 31 24 29)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,19)(14,20)(15,17)(16,18)(25,30)(26,31)(27,32)(28,29), (1,22)(2,23)(3,24)(4,21)(5,12)(6,9)(7,10)(8,11)(13,28)(14,25)(15,26)(16,27)(17,31)(18,32)(19,29)(20,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,3,19)(2,20,4,18)(5,27,7,25)(6,26,8,28)(9,15,11,13)(10,14,12,16)(21,32,23,30)(22,31,24,29)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,19)(14,20)(15,17)(16,18)(25,30)(26,31)(27,32)(28,29), (1,22)(2,23)(3,24)(4,21)(5,12)(6,9)(7,10)(8,11)(13,28)(14,25)(15,26)(16,27)(17,31)(18,32)(19,29)(20,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,3,19)(2,20,4,18)(5,27,7,25)(6,26,8,28)(9,15,11,13)(10,14,12,16)(21,32,23,30)(22,31,24,29) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,21),(6,22),(7,23),(8,24),(13,19),(14,20),(15,17),(16,18),(25,30),(26,31),(27,32),(28,29)], [(1,22),(2,23),(3,24),(4,21),(5,12),(6,9),(7,10),(8,11),(13,28),(14,25),(15,26),(16,27),(17,31),(18,32),(19,29),(20,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,17,3,19),(2,20,4,18),(5,27,7,25),(6,26,8,28),(9,15,11,13),(10,14,12,16),(21,32,23,30),(22,31,24,29)]])
C22×Q8 is a maximal subgroup of
C23.67C23 C23⋊Q8 C23.78C23 C23.38D4 Q8⋊D4 C22⋊Q16 C23.32C23 C23.38C23 Q8⋊5D4 Q8⋊A4
C22×Q8 is a maximal quotient of
C23.37C23 C23⋊2Q8 C23.41C23 D4⋊3Q8 Q8⋊3Q8
Matrix representation of C22×Q8 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 3 |
0 | 0 | 1 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 3 | 4 |
0 | 0 | 0 | 2 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,1,0,0,0,0,1,1,0,0,3,4],[1,0,0,0,0,1,0,0,0,0,3,0,0,0,4,2] >;
C22×Q8 in GAP, Magma, Sage, TeX
C_2^2\times Q_8
% in TeX
G:=Group("C2^2xQ8");
// GroupNames label
G:=SmallGroup(32,47);
// by ID
G=gap.SmallGroup(32,47);
# by ID
G:=PCGroup([5,-2,2,2,2,-2,80,181,86]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export